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ABSTRACT

A local move called a Cn-move is closely related to Vassiliev invariants. A Cn-distance
between two knots K and L, denoted by dCn (K, L), is the minimum number of Cn-moves
needed to transform K into L. Let p and q be natural numbers with p > q ≥ 1. In this
paper, we show that for any pair of knots K1 and K2 with dCn (K1, K2) = p and for
any given natural number m, there exist infinitely many knots Ji (i = 1, 2, . . .) such that
dCn (K1, Ji) = q and dCn (Ji, K2) = p − q, and they have the same Vassiliev invariants
of order less than or equal to m. In the case that n = 1 or 2, the knots Ji (i = 1, 2, . . .)
satisfy more conditions.
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1. Introduction

When we have a knot invariant v which takes values in some abelian group, we can
define an invariant of singular knots by the Vassiliev skein relation:

v(KD) = v(K+)− v(K−),

where a singular knot is an immersion of a circle into R3 whose singularities are
transversal double points only and KD, K+ and K− denote the diagrams of singular
knots which are identical except near one point as is shown in Fig. 1.

An invariant v is called a Vassiliev invariant of order n and denoted by vn, if n

is the smallest integer such that v vanishes on all singular knots with more than n

double points([5]).
A standard Cn-move is a local move depicted in Fig. 2. A C1-move is defined as

a usual crossing change and a C2-move is the same move as a Delta move([10], [11]).
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KD K+ K-

Fig. 1.

Two knots are called Cn-equivalent if they can be transformed into each other by
a finite sequence of standard Cn-moves. M. N. Goussarov([6]) and K. Habiro([8])
showed the following theorem independently.

Theorem 1.1[6,8]. Two knots are Cn-equivalent if and only if they have the same
Vassiliev invariants of order less than n.

Fig. 2

Cn-moves are originally defined by Habiro in [7]. In [15] and [19], they are defined
as a family of local moves. It is known that any kind of Cn-move can be realized
by a finite sequence of standard Cn-moves.

If a knot K can be transformed into L by standard Cn-moves, we denote the
minimum number of Cn-moves needed to transform K into L by dCn

(K, L) and
call it the Cn-distance between K and L. In this paper, we use the notation dG and
d∆ instead of dC1 and dC2 , respectively.

Let Γi (i ∈ N) be a Cn-equivalence class of knots in R3, then (Γi, dCn
) is a metric

space. We note that in the case that n = 1 and 2 we have only one Cn-equivalence
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class. Let ` be a natural number and K a knot in Γi. Let BCn

` (K) = {K ′ ∈
Γi|dCn(K,K ′) ≤ `}. It is a ball whose center is K. We consider the intersection of
two balls.

In [1], Baader showed the following.

Theorem 1.2 [1]. For any pair of oriented knots K1 and K2 with dG(K1,K2) =
2, there are infinitely many knots Jj (j = 1, 2, . . .) such that dG(K1, Jj) =
dG(Jj ,K2) = 1.

From here p and q denote natural numbers with p > q ≥ 1. Theorem 1.2 can be
extended to the case that dG(K1,K2) = p, dG(K1, Jj) = q and dG(Jj ,K2) = p− q.

In the case that n = 2, the first author shows Theorem 1.3.

Theorem 1.3 [9]. For any pair of oriented knots K1 and K2 with d∆(K1,K2) = p,
there are infinitely many knots Jj (j = 1, 2, . . .) such that d∆(K1, Jj) = q and
d∆(Jj ,K2) = p− q.

In the proofs of Theorem 1.2 and 1.3, it is shown that the Conway polynomials
of Jj and Jk are different if j 6= k. Taniyama extended Theorem 1.2 and the case
p = 2 in Theorem 1.3 to the following.

Theorem 1.4[18]. Let m and n be non-negative integers. Suppose oriented knots
K0,K1,. . ., Km,Km+1,. . . Km+n satisfy dG(K0,Ki) = 1 (i = 1, 2, . . . , m) and
d∆(K0,Ki) = 1 (i = m + 1,m + 2, . . . , m + n). Then there are infinitely many
knots Jj (j = 1, 2, . . .) such that dG(Jj ,Ki) = 1 (i = 0, 1, . . . , m, j = 1, 2, . . .) and
d∆(Jj ,Ki) = 1 (i = m + 1,m + 2, . . . , m + n, j = 1, 2, . . .).

Recently, Baader shows Theorem 1.5.

Theorem 1.5 [2]. Let m be a natural number and K a knot. For any pair of
oriented knots K1 and K2 with dG(K1,K2) = 2, there exists a knot K ′ which
satisfies the following:
(1) dG(K1,K

′) = dG(K ′,K2) = 1 and
(2) for any vi (i = 1, 2, . . . , m), vi(K ′) = vi(K).

We have Theorem 1.6 as a generalization of Theorem 1.5.

Theorem 1.6. Let m be a natural number and K a knot. For any pair of oriented
knots K1 and K2 with dG(K1,K2) = p, there are infinitely many knots Jj (j =
1, 2, . . .) which satisfy the following:
(1) dG(K1, Jj) = q and dG(Jj ,K2) = p− q (j = 1, 2, . . .),
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(2) for any vi (i = 1, 2, . . . , m), vi(Jj) = vi(K) (j = 1, 2, . . .) and
(3) ∇Jj

(z) = ∇Jk
(z) (j 6= k, j, k = 1, 2, . . .), where ∇J(z) is the Conway polynomial

of J .

Theorem 1.7 is a generalization of Theorem 1.3.

Theorem 1.7. Let m be a natural number. For any pair of oriented knots K1 and
K2 with d∆(K1,K2) = p, there are infinitely many knots Jj (j = 1, 2, . . .) which
satisfy the following:
(1) d∆(K1, Jj) = q and d∆(Jj ,K2) = p− q (j = 1, 2, . . .),
(2) for any vi (i = 1, 2, . . . , m), vi(Jj) = vi(Jk) (j 6= k, j, k = 1, 2, . . .) and
(3) ∇Jj (z) = ∇Jk

(z) (j 6= k, j, k = 1, 2, . . .).

In the case that n ≥ 3, we obtain Theorem 1.8.

Theorem 1.8. Let m be a natural number. For any pair of oriented knots K1 and
K2 with dCn

(K1,K2) = p, there are infinitely many knots Jj (j = 1, 2, . . .) which
satisfy the following:
(1) dCn(K1, Jj) = q and dCn(Jj ,K2) = p− q (j = 1, 2, . . .) and
(2) for any vi (i = 1, 2, . . . , m), vi(Jj) = vi(Jk) (j 6= k, j, k = 1, 2, . . .).

In the proof of Theorem 1.8, we will show that the Conway polynomials of Jj

and Jk are different if j 6= k.

2. Cn-moves and Jacobi diagrams

A tangle T is a disjoint union of properly embedded arcs in the unit 3-ball B3.
A tangle T is trivial if there exists a properly embedded disk in B3 that contains
T . A local move is a pair of trivial tangles (T1, T2) with ∂T1 = ∂T2 such that for
each component t of T1 there exists a component u of T2 with ∂t = ∂u. Two local
moves (T1, T2) and (U1, U2) are equivalent, if there is an orientation preserving self-
homeomorphism ψ : B3 → B3 such that ψ(Ti) and Ui are ambient isotopic in B3

relative to ∂B3 for i = 1, 2.

Fig. 3

Let (T1, T2) be a local move, t1 a component of T1 and t2 a component of T2
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Fig. 4

such that ∂t1 = ∂t2. Replacing t1 and t2 by hooked arcs in Fig. 3, we obtain a
new kind of local move. This local move is called a double of (T1, T2) with respect
to the components t1 and t2. A C1-move is a local move as illustrated in Fig. 4. A
Ck+1-move is a double of a Ck-move. Then, there exist some kinds of Cn-move and
any kind of Cn-move is realized by a finite sequence of standard Cn-moves.

A Cn-move is represented by the band sum of the link called the Cn-link model.
The move in Fig. 5 is equivalent to the standard Cn-move. The link in Fig. 6 is the
Cn-link model for the standard Cn-move. For details, refer to [15] or [19].

Fig. 5

By Km, we denote a singular knot with m double points. From the definition
of the Vassiliev invariant, vm(Km) does not change by a crossing change and it is
determined by the positions of the double points on Km. To show the positions of
double points, the notion of a chord diagram is introduced in [5]. A chord diagram
of order n is an oriented circle with n chords. By connecting the preimages of each
double point by a chord, we may associate the chord diagram to a singular knot.
The value of vn for a chord diagram of order n is defined as the value of it for a
singular knot with n double points that is associated with the chord diagram. In the
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Fig. 6

additive group generated by the chord diagrams of order n, the relation in Fig. 7
is called the 4T relation.

Fig. 7

Chord diagrams are generalized to Jacobi diagrams in [3]. A Jacobi diagram of
order n is a trivalent graph with 2n vertices. It is a union of a circle and an internal
graph G. The circle is oriented and the other edges are all unoriented. Each trivalent
vertex on G has an orientation, that is a cyclic ordering of the edges incident to it.
In the additive group generated by the Jacobi diagrams of order n, the relation in
Fig. 8 is called the STU relation. The IHX relation in Fig. 9 and the antisymmetry
relation in Fig. 10 can be obtained as a consequence of STU relations.

Let An be the additive group generated by the chord diagrams of order n modulo
the 4T relation and Bn the additive group generated by the Jacobi diagrams of order
n modulo the STU relation. Then the isomorphism between An and Bn is induced
by the inclusion of chord diagrams into Jacobi diagrams [3].

A one-branch tree diagram T is a special kind of Jacobi diagram whose inter-
nal graph G is isomorphic to a standard n-tree in Fig. 11 preserving the vertex
orientations([14]). Label the branches of the standard n-tree as in Fig. 11. We may
label the branches of G under the isomorophism between G and the standard n-tree.
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Fig. 8

Fig. 9

Fig. 10

And number the vertices of the circle of T by 0, 1, 2, . . . , n in the counterclockwise
direction such that the vertex on the circle which corresponds to the branch 0 of
G is numbered by 0. The correspondence between the labels of branches of G and
the numbers of the corresponding vertices on the circle determines a permutation
σ ∈ Sn. Conversely, if a permutation σ ∈ Sn is given, a unique one-branch tree
diagram T can be constructed. Then we denote a one-branch tree diagram by Tσ.
By STU relations, a one-branch tree diagram can be expressed as a linear combi-
nation of chord diagrams. The value of vn for a one-branch tree diagram of order
n is defined as the linear combination of the values for the chord diagrams.

A one-branch tree diagram is closely related to a standard Cn-move.

Theorem 2.1[16]. If a knot K ′ is obtained from a knot K by a single standard
Cn-move, then

vn(K ′)− vn(K) = ±vn(Tσ),

where Tσ is a one-branch tree diagram of order n.

In Theorem 2.1, the one-branch tree diagram Tσ is determined by the positions
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Fig. 11

of arcs on a knot K in the performed Cn-move and the sign of the formula depends
only on the orientations of arcs in the Cn-move.

For a singular knot, Theorem 2.1’ holds.

Theorem 2.1’[13]. If a singular knot Lk with k double points is obtained from a
singular knot Kk by a single standard Cn-move, then

vk+n(Lk)− vk+n(Kk) = ±vk+n(Tσ),

where Tσ is a Jacobi diagram of order k + n whose internal graph is isomorphic to
the union of k chords and a one-branch tree diagram of order n.

Here, we consider a new kind of Cm+1-move. By a C
(i)
m+1-move, we denote a spe-

cial kind of Cm+1-move which is obtained from the standard Cm-move by changing
the arc labelled i (2 ≤ i ≤ m − 2) to hooked arcs. Fig. 12 shows a C

(m−3)
m+1 -move

which is used for the proof of Theorem 2.5. A C
(m−2)
m+1 -move is used for the proof of

Theorem 2.6.

Fig. 12

By the results of [17], we have following two lemmas for a C
(i)
m+1-move.
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Lemma 2.2[17]. If a knot K ′ is obtained from a knot K by a single C
(i)
m+1-move,

then

vm+1(K)− vm+1(K ′) = ±vm+1(T i
σ),

where T i
σ is the one-branch tree diagram of order m + 1 whose internal graph is

isomorphic to the graph in Fig. 13 and σ ∈ Sm+1.

Fig. 13

In the case that the Jacobi diagram has the internal graph which is isomorphic
to the graph in Fig. 13, the correspondence between the labels of branches and the
numbers of the vertices on the circle determines a permutation σ ∈ Sm+1 as in a
one-branch tree diagram.

Lemma 2.3[17]. If a knot K ′ is obtained from a knot K by a single C
(i)
m+1-move,

then

∇K(z) = ∇K′(z),

where ∇K(z) is the Conway polynomial of K.

By the same way of the proof of Lemma 3.2 in [13], we obtain Lemma 2.4.

Lemma 2.4. Let T i
id be the Jacobi diagram of order m + 1 in Lemma 2.2 whose

permutation σ ∈ Sm+1 is the identity, then

V (m+1)(T i
id) = 3(−2)m−1(m + 1)!,

where V (m+1)(K) is the m + 1th derivative of the Jones polynomial of a knot K

evaluated at 1.
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In the standard Cn-move in Fig. 2, let c1, c21, c22, . . . , cn1, cn2 be the crossing
points in Fig. 14.

Fig. 14

By K

(
1 2 . . . n

· i2 . . . in

)
(ij = ±1, j = 2, 3, . . . , n), we denote the singular knot

which is obtained from K by the following:
Collapse C1 to a double point. If ij = 1, collapse cj1 to a double point. If ij = −1,
change a crossing at cj1 and collapse cj2 to a double point.

To show Theorem 2.1, Lemma 2.5 is proved in [16].

Lemma 2.5[16]. Lf a knot L is obtained from a knot K by a single standard
Cn-move, then

vn(K)− vn(L) = ±
∑

ij = ±1
j = 2, 3, . . . , n

∏
ij vn(K

(
1 2 . . . n

· i2 . . . in

)
).

We note that Lemma 2.5 holds for Vassiliev invariants of any order. By mak-

ing
∑

ij = ±1
j = 2, 3, . . . , n

∏
ij K

(
1 2 . . . n

· i2 . . . in

)
to a one-branch tree diagram by STU

relations, Theorem 2.1 is obtained. From Theorem 2.1’ and Lemma 2.5, we have
Theorem 2.6.
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Theorem 2.6. If a knot L is obtained from a knot K by a local move in Fig. 15,
then

vm+n+1(K)− vm+n+1(L) = ±vm+n+1(Tσ),

where Tσ is a one-branch tree diagram of order m + n + 1.

Fig. 15

Proof. By K ′ and L′, we denote the knots that is obtained from K and L in
Fig. 15 by performing Cn-moves and deleting the Cn-link models, respectively. By
Lemma 2.5,

vm+n+1(K)− vm+n+1(K ′) = ±
∑

ij = ±1
j = 2, 3, . . . , n

∏
ij vm+n+1(K

(
1 2 . . . n

· i2 . . . in

)
).

(2.1)

vm+n+1(L)− vm+n+1(L′) = ±
∑

ij = ±1
j = 2, 3, . . . , n

∏
ij vm+n+1(L

(
1 2 . . . n

· i2 . . . in

)
).

(2.2)

Here, K

(
1 2 . . . n

· i2 . . . in

)
and L

(
1 2 . . . n

· i2 . . . in

)
are singular knots that is obtained

from K and L by making crossing points to double points in the Cn-link models,
respectively. Since K ′ and L′ are same knots, by (2.1) and (2.2)
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vm+n+1(K)− vm+n+1(L)

= ±
∑

ij = ±1
j = 2, 3, . . . , n

∏
ij {vm+n+1(K

(
1 2 . . . n

· i2 . . . in

)
)

− vm+n+1(L
(

1 2 . . . n

· i2 . . . in

)
)}. (2.3)

If we perform Cm+1-moves on K

(
1 2 . . . n

· i2 . . . in

)
two times, we have

L

(
1 2 . . . n

· i2 . . . in

)
. Let M

(
1 2 . . . n

· i2 . . . in

)
be the singular knot that is obtained from

K

(
1 2 . . . n

· i2 . . . in

)
by a single Cm+1-move as shown in Fig. 16.

Fig. 16

By Theorem 2.1’,

vm+n+1(K
(

1 2 . . . n

· i2 . . . in

)
)− vm+n+1(M

(
1 2 . . . n

· i2 . . . in

)

= ±vm+n+1(T ′σ(i2, . . . , in). (2.4)

vm+n+1(M
(

1 2 . . . n

· i2 . . . in

)
)− vm+n+1(L

(
1 2 . . . n

· i2 . . . in

)

= ±vm+n+1(T ′′σ (i2, . . . , in). (2.5)

Here, T ′σ(i2 . . . , in) and T ′′σ (i2, . . . , in) are Jacobi diagrams of order m + n + 1
whose internal graphs are the union of n chords and a one-branch tree diagram of
order m + 1. Since the orientations of m + 1th arcs are different in the first and
the second performed Cm + 1-moves, the signs of (2.4) and (2.5) are opposite. By
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Fig. 17

considering the positions of the double points, the internal graph in T ′σ(i2 . . . , in)
is (a) or (b) in Fig. 17 and that in T ′′σ (i2, . . . , in) is the other.

By (2.4) and (2.5),

vm+n+1(K
(

1 2 . . . n

· i2 . . . in

)
)− vm+n+1(L

(
1 2 . . . n

· i2 . . . in

)

= ±{vm+n+1(T ′σ(i2, . . . , in)− vm+n+1(T ′′σ (i2, . . . , in)}. (2.6)

From (2.3) and (2.6),

vm+n+1(K)− vm+n+1(L)

= ±
∑

ij = ±1
j = 2, 3, . . . , n

∏
ij {vm+n+1(T ′σ(i2, . . . , in)

− vm+n+1(T ′′σ (i2, . . . , in)}. (2.7)

By the same way of the proof in Theorem 2.1 in [16], we have

vm+n+1(K)− vm+n+1(L) = ±{vm+n+1(T ′σ)− vm+n+1(T ′′σ )}. (2.8)

In (2.8), T ′σ is the Jacobi diagram of order m + n + 1 whose internal graph is
one of (a) and (b) in Fig. 18 and T ′′σ is one whose internal graph is the other.

Fig. 18

By a STU relation, we have

vm+n+1(K)− vm+n+1(L) = ±vm+n+1(Tσ).
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This completes the proof of Theorem 2.6.

Remark 2.7. The local move in Theorem 2.6 is equivalent to a band crossing change
between a standard Cn-link model and a standard Cm-link model in Fig. 19.

Fig. 19

3. Proof of Theorem 1.6

For a pair of knots K1 and K2 with dG(K1,K2) = p, we consider the following
sequence between K1 and K2, where adjacent knots are transformed into each other
by a crossing change. In the sequence, dG(K1,K

′) = q. We direct our attention to
the part from K ′

1 to K ′
2 where dG(K ′

1,K
′
2) = 2 and dG(K ′

1,K
′) = dG(K ′,K ′

2) = 1.

K1 ↔ · · · ↔ K ′
1 ↔ K ′

︸ ︷︷ ︸
q times crossing changes

↔ K ′
2 ↔ · · · ↔ K2

By Theorem 1.5, we may assume that a knot K ′ satisfies the following:
(1) K ′ has a diagram as in Fig. 20 such that if we change a crossing at A on the
diagram of K ′, we have a diagram of K ′

1 and we change a crossing at B, we have
a diagram of K ′

2, and
(2) for any vi (i = 1, 2, . . . m), vi(K ′) = vi(K).

Fig. 20
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The move in Fig. 21 is equivalent to a C
(m−3)
m+1 -move in Fig. 12.

Fig. 21

We consider the move in Fig. 21 such that the permutation of the Jacobi diagram
corresponding to the move is identity. By Jj , we denote the knot that is obtained
from K ′ by performing the above move j times as is shown in Fig. 22.

Fig. 22

If we change a crossing at A, Jj becomes a diagram of K ′
1 and if we change a
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crossing at B, Jj becomes a diagram of K ′
2. Then, dG(K1, Jj) = q and dG(Jj ,K2) =

p− q. A C
(m−3)
m+1 -move is a kind of Cm+1-move. By Theorem 1.1, we have

vi(Jj) = vi(K ′) = vi(K) (i = 1, 2, . . . , m).

By Lemma 2.3,

∇Jj
(z) = ∇Jk

(z) (j 6= k, j, k = 1, 2, . . .).

In Lemma 2.2, the sign of the formula is determined only by the orientations of
arcs in the performed C

(m−3)
m+1 -move as in Theorem 2.1. Since we repeat the same

C
(m−3)
m+1 -move on the knot K ′, we have

V (m+1)(Jj)− V (m+1)(Jj+1) = V (m+1)(Jj+1)− V (m+1)(Jj+2).

By Lemma 2.4,

V (m+1)(Ji) 6= V (m+1)(Jk) (i 6= k, i, k = 1, 2, . . .).

This completes the proof of Theorem 1.6.

4. Proof of Theorem 1.7

As in the proof of Theorem 1.6, for a pair of knots K1 and K2 with d∆(K1,K2) = p,
we consider the following sequence between K1 and K2, where adjacent knots are
transformed into each other by a Delta move. We direct our attention to the part
from K ′

1 to K ′
2 where d∆(K ′

1,K
′
2) = 2 and d∆(K ′

1,K
′) = d∆(K ′,K ′

2) = 1.

K1 ↔ · · · ↔ K ′
1 ↔ K ′

︸ ︷︷ ︸
q times Delta moves

↔ K ′
2 ↔ · · · ↔ K2

A Delta move is represented by the band sum of a copy of Borromean rings[11].
A knot K ′ has a diagram such that if we delete a copy of Borromean rings A,
we have a diagram of K ′

1 and if we delete a copy of Borromean rings B, we have
a diagram of K ′

2. We can arrange the bands such that the bands bi (i = 0, 1, 2)
incident to the Borromean rings B appear in front of the bands b′k (k = 0, 1, 2)
incident to the Borromean rings A along the knot K ′ by sliding the bands on K ′.
And by the symmetry of Borromean rings, we may suppose that bands b0, b1, b2,
b′0, b′1 and b′2 appear in this order along the orientation of K ′ as in Fig. 23.

Fig. 23 is deformed into Fig. 24. By performing C
(m−2)
m+1 -moves for the knot in

Fig. 24 two times, we obtain the knot in Fig. 25. We consider the move from Fig. 24
to Fig. 25 such that the permutation of the Jacobi diagram for the corresponding
C

(m−2)
m+1 -move is identity.
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Fig. 23

Fig. 24

By Jj , we denote the knot that is obtained from K’ by performing the above
move j times. By the same way of the proof of Theorem 2.6, we have d∆(K1, Jj) = q

and d∆(Jj ,K2) = p− q. And we obtain

vi(Jj) = vi(Jk) = vi(K ′)

and

∇Jj (z) = ∇Jk
(z) = ∇K′(z) (j 6= k, j, k = 1, 2, · · · , )

By the same way of the proof of Theorem 3.6, we have

vm+3(Jj)− vm+3(Jj+1) = ±vm+3(Tσ),

where Tσ is the Jacobi diagram of order m + 3 whose internal graph is isomorphic
to the graph in Fig. 26.

By Lemma 3.4,

V m+3(Tσ) = 3(−2)m+1(m + 3)!.
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Fig. 25

Fig. 26

Therefore,

V m+3(Jj) 6= V m+3(Jk) (j 6= k, j, k = 1, 2, · · · ).

5. Proof of Theorem 1.8

There exisits a Cn-move which changes the Conway polynomial. As to the one-
branch tree diagram corresponding to the move, we have the following lemma by
the proof of Theorem 1.3 in [17].

Lemma 4.1. Let m′ be an even natural number. By Tσ, we denote a one-branch tree
diagram of order m′ whose permutation σ satisfies that σ(m′ − 1) < σ(1) < σ(m′)
as in Fig. 27. Then

am′(Tσ) = ±2,

where am′ is the coefficient of zm′
of the Conway polynomial.
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Fig. 27

As in sections 3 and 4, for a pair of knots K1 and K2 with dCn(K1,K2) = p,
we consider the following sequence, where adjacent knots are transformed into each
other by a Cn-move. We direct our attention to the part from K ′

1 to K ′
2.

K1 ↔ · · · ↔ K ′
1 ↔ K ′

︸ ︷︷ ︸
q times Cn-moves

↔ K ′
2 ↔ · · · ↔ K2

A knot K ′ has a diagram such that if we delete a Cn-link model with bands A,
we have a diagram of K ′

1 and if we delete a Cn-link model with bands B, we have
a diagram of K ′

2 as in Fig. 28.

Fig. 28

We cannnot change the order of bands incident to the same Cn-link model on K ′.
However we can change the order of the band b′k and the band bi (i, k = 0, 1, . . . , n)
in Fig. 28 by sliding the bands on K ′. Then we may suppose that the band b′n−1

exists and the band b′n does not exist between the bands b0 and b1.
Let m′ be an even natural number more than m + n. We transform K ′ into the

knot in Fig. 29. Fig. 29 shows the case n = 3.
The knot in Fig. 29 is considered to be obtained from K ′ by performing Cm′−n-

moves two times. By Jj , we denote the knot that is obtained from K ′ by performing
the moves above j times as shown in Fig. 30.
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Fig. 29

Fig. 30

The knot Jj satisfies that if we delete a Cn-link model with bands A, we have a
diagram of K ′

1 and if we delete a Cn-link model with bands B, we have a diagram
of K ′

2. Then we have dCn(K1, Jj) = q and dCn(Jj ,K2) = p− q. Since m′ − n > m

and by Theorem 1.1,

vi(Jj) = vi(Jk) (i = 1, 2, . . . , m, j 6= k, j, k = 1, 2, . . .).
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By Theorem 3.6, we have

vm′(Jj)− vm′(Jj+1) = ±vm′(Tσ),

where Tσ is a one-branch tree diagram of order m′ that satisfies the condition in
Lemma 4.1. By Lemma 4.1, we have

am′(Jj) 6= am′(Jk) (j 6= k, j, k = 1, 2, . . .).

This completes the proof of Theorem 1.8.
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